
Automated Decomposition of Concurrent Programs
for Asynchronous Logic Synthesis

Karthi Srinivasan
Department of Electrical and Computer Engineering

Yale University
New Haven, USA

karthi.srinivasan@yale.edu

Rajit Manohar
Department of Electrical and Computer Engineering

Yale University
New Haven, USA

rajit.manohar@yale.edu

Abstract—Decomposition is the process of modifying a high-
level description of an asynchronous circuit into an equivalent
but more concurrent version with the goal of producing more
performant circuits. We introduce a novel, general method for
decomposing a system of abstract programs into an equivalent
system with higher concurrency. The method uses control and
data dependencies in the input program to determine indepen-
dent portions and extract them into separate sub-processes. We
formulate the problem of extracting these sub-processes in terms
of finding cuts that satisfy certain constraints in a graph, and
propose a heuristic to find these cuts that performs well. The
decomposition algorithm can be repeatedly applied in an iterative
manner to produce progressively more concurrent systems. The
proposed procedure results in higher throughput at the cost of a
more expensive circuit in terms of area and power consumption.
A software tool that implements the decomposition algorithm is
also demonstrated and benchmarked.

Index Terms—Asynchronous Integrated Circuits, Concurrent
Programs, Process Decomposition

I. INTRODUCTION

The synthesis of asynchronous circuits involves transform-
ing a high-level sequential specification into a system of cir-
cuits that implement the computation described. The character-
istics of the final circuit that is generated depend on the design
point that is targeted for that particular application. Techniques
for synthesizing these circuits fall broadly into two categories.
The first are syntax-directed translation methods [1, 2], which
synthesize a given high-level program exactly as written,
respecting all the synchronization behavior that is contained
within it. While these are general purpose techniques, they
lack the capacity to exploit concurrency that may be hidden
in the sequential description of the computation. At the other
extreme are dataflow-style techniques that break up the high-
level program into smaller inter-connected processes running
in parallel, each of which can be implemented using one of a
small set of circuit templates (i.e. the dataflow elements). Pure
dataflow synthesis can result in circuits that are over-pipelined
and sacrifice latency, energy and area for an improvement in
throughput [3]. The goal of our work is to develop a flexible
tool that can introduce some concurrency, but where the user
has a choice about the degree of decomposition introduced.

To ensure that we preserve the correctness of the origi-
nal computation when automating decomposition, we restrict
our attention to slack elastic programs [4]. Slack elasticity

provides theoretical guarantees about the correctness of de-
composition techniques that introduce concurrency, including
pipelining and and projection [5]. Prior work in this area
such as the static tokens method [6] results in extremely fine-
grained pipelining, since the target physical architecture was
an FPGA with a fixed set of dataflow primitives. The data-
driven decomposition method [7] decomposes each variable
in the original program into a separate process, each of which
can be implemented by a single pre-charge half-buffer (PCHB)
stage. This also leads to over-pipelining due to the resultant
constraints on each process (e.g. all input communications
must precede all output communications).

We present a general, automated technique to decompose
sequential slack-elastic programs into a system of concurrent
programs. The decomposition technique operates on an inter-
mediate representation (IR) of the input program written in
CHP (Communicating Hardware Processes), whose syntax is
described in Appendix I. In standard compiler terminology,
the decomposition is a transformation pass that is applied on
the IR, prior to circuit synthesis; hence, it can be viewed as a
CHP-to-CHP re-writing whose goal is to create a new program
that improves performance.

We introduce a graph-based framework for analyzing de-
composition opportunities in the CHP description of an asyn-
chronous circuit that incorporates a combination of control-
and data-dependencies, called the dependence-based decom-
position graph. The framework allows us to formulate the
problem of decomposition in terms of finding cuts in a graph
that satisfy certain constraints. We also demonstrate a simple
heuristic to find these cuts that is surprisingly efficient, and
show that circuits synthesized from the decomposed CHP
achieve superior throughput (1.4–13.3×) compared to those
synthesized from the original CHP, at the cost of higher
power consumption, latency and area. Our decomposition
process can be viewed as a generalization of previous work
on fine-grained dataflow decomposition. In our approach, we
permit the degree of pipelining/decomposition to be controlled,
and no assumptions are made about the underlying circuit
realization (e.g. dataflow elements only) of the behavioral
description.

The rest of this paper is organized as follows. Section
II introduces some background that forms the basis for this

99

2025 29th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)

979-8-3315-0310-9/25/$31.00 ©2025 IEEE
DOI 10.1109/ASYNC65240.2025.00022

20
25

 2
9t

h
IE

EE
 In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

A
sy

nc
hr

on
ou

s C
irc

ui
ts

 a
nd

 S
ys

te
m

s (
A

SY
N

C
) |

 9
79

-8
-3

31
5-

03
10

-9
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

SY
N

C
65

24
0.

20
25

.0
00

22

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 13,2025 at 00:09:16 UTC from IEEE Xplore. Restrictions apply.

work. Section III describes our primary contribution, a gen-
eral method for decomposition of concurrent message-passing
programs. Section IV provides results from simulations of
synthesized circuits, Section V details some immediate future
work, and Section VI concludes the paper.

II. BACKGROUND

We specify an asynchronous circuit as a system of con-
current processes, using the CHP notation. CHP processes
communicate with each other via message-passing channels,
which are used to send/receive values. Every channel in the
system has a certain amount of slack, which is the maximum
number of pending values that can exist on that channel at any
given time. Slack-elastic programs are those whose correctness
is unchanged when the slack on any channel is increased.
Increasing slack on channels decreases synchronization across
processes and can increase the concurrency in the system. Note
that slack elasticity is a property of a closed system and hence
the environment of a program must also be taken into account
in order to make a determination. From prior work, it is known
that when a closed system is deterministic and does not contain
any channel probes, the system is slack elastic. A detailed
analysis of slack elasticity can be found in [4].

Since increasing the slack on a channel can increase the
number of execution traces, we use the sequence of values
communicated over channels to specify the process [4]; the
relative order of communication actions on different channels
is not considered. This has the consequence of allowing
several concurrent transformations. For example, consider the
following simple CHP:

*[A?x ;B?y ;C !x ;D !y]

Here, the communication actions on {A,C} and {B,D} are
not data dependent and the ordering imposed by the semi-
colons is unnecessary. Under a slack elastic environment, this
can be transformed into two concurrent buffers:

*[A?x ;C !x] ∥ *[B?y ;D !y]

The two systems have the same sequences of values sent over
the channels and are hence equivalent.

An important transformation on the input CHP that enables
analysis is the static token form (STF) [6]. The process of
converting into STF consists of several transformation of the
program. The first is to ensure that every variable is assigned
exactly once. If a program consists of multiple assignments to
the same variable, then a fresh variable is introduced to resolve
this. For example, *[A?x ; x := x + 1;B !x] is converted to
*[A?x ; y := x + 1;B !y]. Next, we introduce ϕ- and ϕ−1-
functions, similar to those in static single information (SSI)
form [8]. In SSI form, if a definition (write) of a variable at
program point p reaches two uses (reads) at points p1 and
p2, then either all paths (through the program) from p to p1
contain p2 or all paths from p to p2 contain p1. This constraint
is typically violated at entry points of selections. The ϕ−1-
functions are used to resolve this and to capture the mapping

of values for variables that were defined before a selection but
used within it. Consider the following process:

*[C ?c,X ?x ;
[c = 0 −→ Y !x[]c = 1 −→ Z !x[]else −→ skip]]

Here, the value of the variable x has its value used in some
of the branches of the selection and hence a ϕ−1-function is
introduced to obey the aforementioned rule:

*[C ?c,X ?x ; {x1, x2,⊥} := ϕ−1(x);
[c = 0 −→ Y !x1[]c = 1 −→ Z !x2[]else −→ skip]]

In case the variable is unused in a branch, a dummy bot-
tom/null variable (⊥) is placed as one of the outputs of the
ϕ−1-function. Note that the ϕ−1-function has one input but
several outputs, each corresponding to the branches in the
selection. The dual problem occurs when a variable is defined
in multiple branches within a selection but is used outside of
it, such as in the merge process:

*[C ?c; [c −→ Y ?x[]¬c −→ Z ?x];X !x]

Here, we introduce a ϕ-function to correctly merge the val-
ues from the branches so that the downstream program can
function correctly:

*[C ?c; [c −→ Y ?x1[]¬c −→ Z ?x2];
x := ϕ(x1, x2);X !x]

Finally, we also introduce loop-ϕ-functions to handle loop-
carried dependencies correctly. Consider a loop that executes
several times. A variable used within a loop may refer to the
value from before the loop started (on the first iteration) or
to the final value at the end of the loop execution (on every
subsequent iteration). Consider the simple process below:

s := 0; *[X ?x ; s := s + x ;Y !s ← s < 10];S !s

Here, the s being referred to in the RHS of the accumulation
step could be either the initial condition or the loop-carried
value, depending on the iteration number. Further, the final
value of s at the tail of the loop needs to be mapped to
either the S !s action or back around to the start of the loop
depending on whether the loop terminates. This is reminiscent
of a ϕ−1-function. In essence, a loop-ϕ-function is a ϕ and a
ϕ−1-function, grouped together for convenience:

spre := 0;
*[sin := ϕL(spre , sloop);X ?x ; sout := sin + x ;Y !sout ;
{sloop , spost} := ϕ−1

L (sout)← sout < 10];S !spost

The variable sloop is a temporary variable that is used to loop
the value at the end of the loop back to the start in cases where
the loop re-executes.

These special functions have been introduced to enable
analysis only, and are not true executable CHP constructs in
the same way that assignments, sends or receives are; they do
not have a circuit implementation. Further, we only consider
do-loops, and do not allow nesting of loops. This is not a true
restriction as any CHP program can be systematically rewritten
to satisfy this constraint (detailed in Appendix II). STF and

100

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 13,2025 at 00:09:16 UTC from IEEE Xplore. Restrictions apply.

other related canonical forms derive from dataflow languages,
which describe computation in terms of functional blocks that
operate on elementary values. Translating sequential programs
into dataflow primitives naturally allows the concurrent exe-
cution of non-interfering parts [9]. For concreteness, we use
the ϕ/ϕ−1 notation in STF in what follows.

III. PROPOSED DECOMPOSITION TECHNIQUE

The first step in the automatic decomposition process is
to parse the input CHP program into an abstract syntax tree
(AST), which is an in-memory representation of the program.
Next, we apply standard compiler optimization passes to the
the AST, such as dead-code elimination and constant propa-
gation, which have been extensively studied in the software
compiler literature [10]. Following this, we perform a rewrite
of every selection construct in the CHP such that the guards are
in a standard form. This standard form constitutes computing
and assigning n boolean variables, one for each branch of an
n-way selection. As an illustration, the following CHP:

*[... [x = 0 −→ ..[]x = 1 ∧ y = 0 −→ ..]; ...]

would get rewritten into:

*[... (g0 := (x = 0), g1 := (x = 1 ∧ y = 0));
[g0 −→ ..[]g1 −→ ..]; ...]

It should be clear that this transformation is correct when
the guards consist purely of local variables, since the newly
introduced variables are not visible to the rest of the system.
Note that since we are focused on decomposing programs that
are slack elastic, the assumption that guards are probe-free is a
natural one; the presence of probes in guards can be a source
of non-determinism and slack in-elastic CHP programs [4].
We apply this particular transformation because it exposes
opportunities for decomposition by separating the computation
of the guard from the actual process of choosing a branch in
the selection itself. Following this, we convert the AST into
static token form, which forms the foundation for the data-
dependency analysis.

A. Graphs and Data Dependencies

Once the AST has been placed into STF, we construct an
auxiliary data structure, the dependence-based decomposition
graph (DDG), which is the entity that actually forms the basis
of the decomposition. The vertices/nodes in this graph are one
of the following:

• Basic node, corresponding to a basic action in the CHP—
send, receive, or assignment.

• Guard node, which is a ‘dummy’ node that is used to
encode a particular branch of a selection. Including this
enables additional decomposition opportunities, as we
will show later, and is a new feature of our analysis com-
pared to more traditional control- and data-dependency
graphs.

• Selection ϕ-node, corresponding to a ϕ-function.
• Selection ϕ−1-node, corresponding to a ϕ−1-function.
• Loop ϕ-node, corresponding to a ϕ-function for loops.

TABLE I
VARIABLES THAT ARE USED AND DEFINED BY DIFFERENT NODE TYPES

Node Type CHP Defs Uses
Receive C?x x -
Assign x := e x vars. in e
Send C !e - vars. in e

Sel. ϕ x := ϕ(x1, .., xn) x x1, ..xn
Sel. ϕ−1 {x1, .., xn} := ϕ−1(x) x1, ..xn x
Loop ϕ xin := ϕL(xpre , xloop) xin xpre , xloop

Loop ϕ−1 {xloop , xpost} := ϕ−1
L (xout) xloop , xpost xout

Guard g (guard expr.) - vars. in g

• Loop ϕ−1-node, corresponding to a ϕ−1-function for
loops.

Each node in the graph is associated with two sets of
variables - the set of variables it defines (defs) and the set
of variables it uses (uses). The defs is the set of variables
that are assigned/written to, in that node. For example, an
assignment node z := f (x , y) has the defs set {z}. The
uses is the set of variables whose values are read/used by
that node. In the previous example, the uses set is {x, y}
as values of both of these are used to compute the RHS of
the assignment. Note that one or both of these sets might be
empty. Table I specifies exactly the defs and uses set for
every type of node in the graph.

The edges between nodes in this graph are directed, and
represent data-dependencies. An edge e from node n1 to node
n2 exists if one of the three following conditions are met:

1) When n1 defines a variable that n2 then uses.
2) If n1 is a guard node and n2 is a ϕ−1-node of the same

selection, and if the output of the ϕ−1 corresponding to
the branch of n1 is non-null.

3) If n1 is a guard node and n2 is a ϕ-node of the same
selection, and if the input of the ϕ corresponding to the
branch of n1 is defined within the selection.

4) If n1 is a guard node of a loop and n2 is a ϕ−1-node
or a ϕ-node of the same loop.

This DDG captures all of the information about the data
dependencies between different blocks in the program, and
allows analysis without the syntactic restrictions of the se-
quential program. Next, we compute the graph of strongly-
connected components (SCC-graph) of the DDG. A strongly-
connected component of a directed graph is a maximal subset
of the vertices such that there is a directed path from every
vertex in the subset to every other vertex. The SCC-graph
is a graph such that each node in it represents an SCC in
the original DDG. The next section describes how strongly-

Fig. 1. Dependence-based Decomposition Graph for the example CHP
program. This is a DAG and hence is its own SCC-graph.

101

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 13,2025 at 00:09:16 UTC from IEEE Xplore. Restrictions apply.

connected components in the DDG capture generalized loops
and why we use this approach. Note that in a directed acyclic
graph (DAG), which corresponds to programs with no loop-
carried variables, every node is trivially its own SCC and the
DAG is its own SCC-graph. Hence, we will use the terms
interchangeably for DAGs. Following this, we compute the
weakly-connected components of the SCC-graph. A weakly-
connected component of a directed graph is a subset of
vertices, such that when considering the directed graph as
an undirected graph, every vertex within the subset can be
reached from every other within the subset, but cannot be
reached from any vertex outside the subset. These components
capture independent data-dependence domains in the program.
At this point in the flow, there are two possibilities. Firstly,
the entire directed graph is comprised of a single weakly-
connected component. In this case, which will be discussed
later, the process cannot be decomposed into several sub-
processes free of cost. The other case is when there is more
than one weakly-connected component. Here, each component
can be decomposed into a separate process since the lack
of edges between the components implies that there are no
data dependencies between any pair. For example, consider
the following simple CHP:

*[A?x ;B?y ;C !(x + 1),D?z ;E !(y + z)]

The DDG for this program is shown in Fig. 1. All nodes
are basic nodes and the edges are added according to the
aforementioned rules. For example, an edge from B?y to
E !(y + z) exists since the latter uses a variable that the
former defines. The DDG for this program consists of two
components. Here, the original program can be rewritten into
two concurrent programs, as follows:

*[B?y ;D?z ;E !(y + z)] ∥ *[A?x ;C !(x + 1)]

However, as mentioned earlier, it is not necessary that
the program neatly separates into several components. With
large sequential programs, the data dependencies are typically
intricate and weave through the length of the program and
some transformations of the DDG need to be performed in
order to enable decomposition.

Intuitively, it should be clear that each weakly-connected
component of the DDG can be implemented as an individual
process. Since there are no shared variables between the
components (as there are no edges between them), the sub-
processes can be viewed as a projection of the original process
onto disjoint sets of variables. Hence we know that this
collection of sub-processes is equivalent to the original CHP
by the projection theorem [5].

B. Transformations

The previous section covered the case where the process
decomposition could be performed at no cost. While this is
beneficial, it is often the case that introducing some additional
communications could result in a process that can be decom-
posed into simpler sub-processes. As an example, consider the
following CHP:

Fig. 2. Dependence-based Decomposition Graph for the example CHP pro-
gram with loop-carried dependencies. Null-terminated edges do not actually
exist in the graph as they do not define a variable, and are shown only for
clarity. Nodes in blue are part of the same SCC and hence the blue edges,
which are within the same SCC are ignored. The nodes in black each form
their own SCC. Since the loop guard is simply true in this case, we omit the
loop-guard node and its associated edges from the diagram.

v := 0;
*[[v = 0 −→ A?v[]else −→ v := v − 1];
[v > 2 −→ X ?x ;Y !(x/v)
[]else −→ P?p;Q !(p*v)]]

Notice that the variable v is a loop-carried dependency for
the entire process but is not actually modified in the second
selection at all. If this process were used in an environment
that can produce/consume tokens sufficiently quickly on all
input/output channels, then the local cycle time of this process
would limit throughput since the execution of the first selection
statement in iteration (i+1) of the loop would have to wait for
the execution of the second selection statement from iteration
i to complete.

The DDG of this process is shown in Fig. 2. Here, the nodes
in blue form an SCC, and hence the SCC-graph of this DDG
simply has this set of blue nodes replaced by a single node.
The nodes in black form their own atomic SCC. From the
DDG and the corresponding CHP, notice that the final write
to the variable v is in the first selection and the rest of the
program only reads it. Due to this fact, the portion of the
process that updates v, i.e. the first selection, can actually
proceed to compute the next value while the other portion,
i.e. the second selection, is still performing its computation
using the first value of v, provided there exists a copy of v
for the second selection to use. This is resolved by inserting
a copy, i.e. breaking the edge from the ϕ-node for v and
introducing two nodes, which send and receive the necessary
value. In the CHP, this is exactly the same as introducing an
internal communication (copy) and corresponding renaming of
the variable downstream in the program, relative to the point
of the communication.

102

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 13,2025 at 00:09:16 UTC from IEEE Xplore. Restrictions apply.

Another way to see this in terms of the DDG. The copy
insertion point shown in Fig. 2 partitions the DDG into
two components. Furthermore, all edges from the original
DDG are from one component to the other—i.e. the graph
of components is acyclic. This means that the first component
can run ahead of the second component, as long as there is
slack on the edge that contains the copy-insertion point. When
performing a copy-insertion in the DDG, we also perform the
corresponding change in the AST for convenience later in the
flow. Consequently, the copy-insertion process modifies the
CHP, resulting in:

v := 0;
*[[v = 0 −→ A?v[]else −→ v := v − 1];

(V !v ,V ?v1);
[v1 > 2 −→ X ?x ;Y !(x/v1)
[]else −→ P?p;Q !(p*v1)]]

At this point, the DDG has two weakly connected compo-
nents, resulting from the copy insertion, and can be decom-
posed into two concurrent programs, which each have fewer
actions in series, resulting in a smaller cycle time, at the cost
of added communication actions:

v := 0; *[[v = 0 −→ A?v[]else −→ v := v − 1];V !v]
∥ *[V ?v1;

[v1 > 2 −→ X ?x ;Y !(x/v1)
[]else −→ P?p;Q !(p*v1)]]

The second process still depends on the value of v that
is computed by the first process. However, instead of the
data-dependence being captured by edges in the DDG, i.e.
local variables, it is captured by a send-receive pair, i.e. a
channel between processes. This process of inserting copies
and moving the data-dependence to the channel level opens up
the possibility for creating smaller processes from the original
program as well as adding slack on the newly introduced
channel to decouple the two processes.

The reason we compute the SCC-graph is to forbid copy-
insertion on edges within the same SCC. Inserting a copy
within an SCC, which captures the loop-carried nature of
v, will exacerbate this loop latency due to the overhead of
communication actions, while likely providing no throughput
benefit. Since we expect the synthesized circuits to be latency-
limited, this is a reasonable constraint to include. Further, this
grouping allows us to treat several dependencies across the
same two SCCs at once, as sets of edges between two SCCs
would be condensed into a single edge in the SCC-graph.

The methods described thus far have only dealt with se-
lections as an entire atomic unit. However, in some cases, it
may be advantageous to decompose different branches of a
selection into different processes. The DDG elegantly allows
this as well through the use of the guard nodes. Guard nodes
decouple the computation of the guard from the actual choice
of branch. In order to illustrate this, consider the following
example:

*[A?x ,B?y ,D?z ,C ?c;
[c = 0 −→ X !x []c = 1 −→ Y !y
[]c = 2 −→ Z !(y + z)[]c = 3 −→ skip]]

Here, the four branches of the selection in the program consist
of two disjoint sets of variables, {x} and {y, z}.

This allows for the selection to broken into two separate
selections in two processes. The crucial variable, as can
be seen from the DDG in Fig. 3, is c, which is used to
compute the guards. If copy insertion is performed on the
edge leading into the guard nodes, then the DDG can be split
into two components. When the processes are reconstructed,
the resulting CHP is:

*[A?x ,C1?c1;
[c1 = 0 −→ X !x []else −→ skip]] ∥

*[B?y ,D?z ,C ?c;C1!c;
[c = 1 −→ Y !y[]c = 2 −→ Z !(y + z)
[]c = 3 −→ skip[]else −→ skip]]

When a selection is fractured into two or more selections
in this manner, it is also necessary to introduce an else-skip
branch in every new selection, if it does not already have one.

Algorithm 1 Decomposition Algorithm
1: Transform selections in CHP into standard form.
2: Place CHP into static token form.
3: Build DDG D from CHP.
4: Compute SCC-graph DS of D.
5: W ←WCC(DS) ▷ Weakly-connected components
6: for w ∈W do
7: for e (n1 → n2) ∈ w do ▷ e : edge
8: if ¬(n1=receive|n2=send) ∧ F(w, e, n1, n2) then
9: go to 16

10: end if
11: end for
12: for e (n1 → n2) ∈ w do
13: if (n1=receive|n2=send) ∧ F(w, e, n1, n2) then
14: break
15: end if
16: end for
17: end for
18: Rebuild CHP from graph D
19:
20: function F(w, e, n1, n2)
21: w′ ← w \ {e} ▷ w with edge e removed
22: if |WCC(w′)| > 1 then
23: delete (e)
24: insert copy (n1, n2)
25: return true
26: end if
27: return false
28: end function

The algorithm used to determine the edges to perform copy-
insertion on is shown in Algorithm 1. The function WCC(·)
returns the weakly-connected components of a graph, and
is implemented using a simple union-find data structure.

103

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 13,2025 at 00:09:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Dependence-based Decomposition Graph for the example CHP
program with disjoint sets of variables in selection branches. Null-terminated
edges do not actually exist in the graph as they do not define a variable, and
are shown only for clarity. This is a DAG and hence is its own SCC-graph.

Following this, there are two passes. The core decision, in line
22, is the same for both passes, and checks whether deleting
that particular edge would increase the number of weakly-
connected components in the graph. If so, the copy-insertion
is performed. The difference between the passes is that on
the first pass, edges with receives as source nodes or sends as
destination nodes are ignored, since performing copy-insertion
on these edges would be equivalent to adding a buffer on
that channel, and better candidates for decomposition might
be ignored. If no candidates were found in the first pass, then
the excluded edges are iterated over in the second pass to
potentially find a candidate.

Notice that the algorithm is guaranteed to perform at least
one copy-insertion, given that the original process has at
least one channel connected to it. This condition is satisfied
by every process of interest since otherwise, the process
would be unobservable by the rest of the processes in the
system and thus can be removed entirely without affecting the
functionality of the system itself. Finally, the algorithm can be
run iteratively any number of times (chosen by the user) on
the CHP to obtain further pipelined/decomposed CHP. Once
the final DDG after copy-insertion is obtained, the CHP for
each process is constructed from it in the following way. For
each weakly-connected component w, we iterate through a
copy of the AST for the CHP and delete every node that is
not present in w. As mentioned earlier, the send and receive
nodes corresponding to copy-insertions are already present in
the AST, and thus no extra work needs to be done to insert
those in the appropriate locations. The resulting pruned AST
is then printed out as a single CHP process.

C. Relation to Dataflow Decomposition

As mentioned earlier in the section, it is rarely the case that
input sequential program intrinsically contains disjoint sub-
graphs that can be extracted into their own processes. More
often, copy-insertion is necessary to decompose the original

program into parts. Hence, the power of the method originates
from identifying suitable points to perform this operation.
In our current implementation, the choice of copy-insertion
location is made according to a simple heuristic: if deleting an
edge and placing a copy increases the number of connected
components, then that communication pair is inserted. This
step forms the crucial iterative process in adding concurrency
to the program. Notably, if this is performed repeatedly on
an acyclic DDG by inserting copies at every edge, the system
reaches a fixed point where each process becomes extremely
simple. At this point, every process will be one of the dataflow
components, and further decomposition will only result in
adding buffers on the channels that exist in this system. In
the event the original DDG has cycles, we can break all loops
with the introduction of initial token buffers (see [3, 6]); this
transformation will result in a DDG that is always acyclic.
Hence, the iterative decomposition we describe here can be
thought of as being a stepwise path to fine-grained dataflow
pipelining, where we have the opportunity to stop at any point
along the path—from fully sequential to fully pipelined.

IV. RESULTS

A software tool has been developed that automatically per-
forms the aforementioned processing on the CHP description
of a given set of processes, and produces as output a more
concurrent CHP description of the same. The tool leverages
the ACT open-source EDA flow for asynchronous circuits [11].
ACT provides native support for CHP and the generated gate-
level descriptions in terms of production rules. In addition,
ACT also has tools that can export designs into verilog netlists
as well as LEF/DEF for compatibility with commercial place-
and-route flows. The circuit description can also be exported
to SPICE for simulation. This allows a designer to use a
combination of ACT and commercial tools for design, testing
and implementation of ASICs.

In order to benchmark the original (sequential) description
against the output (concurrent) description, we synthesize both
using Maelstrom [12], which has been shown to have a signif-
icant improvement over Balsa [2], and thus provides a good
estimate of performance numbers from CHP descriptions. In
particular, when presented with CHP programs that correspond
to dataflow components, Maelstrom produces circuits that have
roughly the same energy, delay, and area as those correspond-
ing to hand-optimized dataflow components [12].

Maelstrom is a state-of-the-art synthesis technique for asyn-
chronous circuits that produces highly efficient control cir-
cuits to implement a high-level CHP program. The datap-
ath implementation supports several types, such as latches,
edge-triggered flip-flops and QDI registers. To synthesize
expressions into combinational circuits, Maelstrom exports
the expression into Verilog syntax and uses external logic
synthesis tools. In particular, both open-source tools such as
abc [13] and commercial tools like Cadence’s genus are
supported, thereby leveraging decades of investment in this
area from the synchronous EDA community. The results from

104

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 13,2025 at 00:09:16 UTC from IEEE Xplore. Restrictions apply.

the external logic synthesis are then imported to produce the
complete circuit.

We synthesize simple CHP programs in order to illustrate
some key advantages of concurrent decomposition, as well
as larger designs to demonstrate quantifiable performance
improvements.

Figure 4 summarizes the results from performing decom-
position on the CHP followed by circuit synthesis. We use
a 65nm technology for all benchmarks. Area estimates are
from a placed, power-routed and global-routed design. Delay
and power estimates are calculated from SPICE simulations
of the synthesized circuit. The rows denoted Decomposed 1,
2 and 3 refer to running the iterative decomposition procedure
once, twice and thrice respectively. This choice was due
to the fact that the gains plateau after 3 iterations for the
processes tested. Note that we provide power estimates in
place of energy per cycle due to the fact that in some cases,
there are several data-independent parts of the program that
decompose out into circuits that run in parallel without any
synchronization between them, and energy per output token is
ill-defined. In these cases, the throughput of the entire system
is also ill-defined, since there are now more than one. As a
result, for these cases, we report throughput numbers of every
independent component.

From Fig. 4, notice that for complex programs, decompo-
sition typically results in higher throughput at the cost of a
larger circuit, increased latency and power consumption. The
source of the added circuitry is the added communications
that are inserted while performing copy-insertions. Further,
note that the gains in throughput plateaus at different points
for different programs. This is due to the fact that beyond a
point, the only available points to insert copies at are sends
or receives. As mentioned earlier, this simply increments the
slack on that channel (adds a buffer), and thus increases the
latency without providing a significant throughput benefit, as
no logic pipelining is achieved.

An interesting observation is that in some cases, such as the
first two example CHP programs, the area of the synthesized
circuit actually reduces after one level of decomposition, due
to the fact that several unnecessary sequencings that existed
in the original program do not exist anymore. This results
in simpler wiring that enables a tighter placement, thereby
bringing down the overall area.

V. FUTURE WORK

As mentioned at the end of Section III, the copy insertion
strategy is currently based on a simple heuristic. As a result,
this might not always result in the best possible decomposition
for a given input. In some cases, it might be detrimental to
perform any decomposition at all and this is not an option in
the heuristic as it always performs at least one copy-insertion.
Even if decomposition is necessary, it is difficult to determine
the optimal extent as this is dependent on the input, as can be
seen from Table 4.

Furthermore, the heuristic does not have any information
about the cost of performing a copy-insertion at a point

built into it, as can be seen from Algorithm 1. If there are
multiple edges that can be deleted to be to convert a single
weakly-connected component into two, then these are treated
as equal by the algorithm. It may be the case that some
deletions result in superior circuits as compared to others,
and this needs to be taken into account. The problem is also
exacerbated by the fact that the purpose of decomposition is
typically to hit some target metric (throughput, energy, cycle
time etc.) and this is not a considered factor when performing
the iterative process. We are currently investigating improved
decomposition heuristics that are driven by user requirements
(e.g. an area budget).

Finally, our current work focuses on improving the through-
put of the system only. Orthogonal to this, there has been work
on sharing expensive hardware resources without sacrificing
performance [15, 16]. Incorporating resource sharing and
scheduling of operators into the framework that we have
developed here forms another important direction for future
research, and would enable further improvement in the quality
of synthesized circuits.

VI. CONCLUSION

In this work, we presented a novel, completely automated
method to decompose a sequential specification of an asyn-
chronous circuit into a concurrent one, with control over the
degree of concurrency. The decomposition technique allows
the circuit designer to target a particular degree of concurrency,
instead of being restricted to either extreme—sequential or
dataflow synthesis. Our technique provides a concurrent but
equivalent description of the input program, thereby allowing
the generated circuits to have higher throughput, at the cost
of higher area and power consumption. The separation of
decomposition and synthesis into distinct steps also allows for
a clearer understanding of the behavior of the system at the
abstract and circuit level. We demonstrate that our decompo-
sition procedure, when applied to an input CHP specification,
results in superior circuits than those that would be possible
with a direct sequential synthesis. The decomposition relies
on a heuristic to split a program into concurrent parts, which
can be significantly improved by using post-synthesis circuit
information in a feedback loop to inform its decisions in
exploring the search-space.

APPENDIX I

Communicating Hardware Processes (CHP) is a hardware
description language used to describe clockless circuits that
is derived from Hoare’s Communicating Sequential Processes
(CSP) [17]. A full description of CHP and its semantics
can be found in [18]. Below is an informal description of
a subset of that notation that we use, listed in descending
precedence, replicated from [19]. For a complete discussion of
the interaction between the handshake expansions of channel
actions and the composition operators, see [20].

A Channel X consists of a request X.r and either an
acknowledge X.a or enable X.e. The acknowledge and enable
serve the same purpose, but have inverted sense. With these

105

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 13,2025 at 00:09:16 UTC from IEEE Xplore. Restrictions apply.

Test CHP Synthesis Area Latency Throughput Power
Program Description Method (µm2) (ns) (MHz) (µW)

*[A?w ;W !w ; Sequential 3833 2.84 219 112
Sequential B?x ;X !x ; Decomposed 1 3040 0.18 (x4) 2810 (x4) 405

Buffers C?y ;Y !y ; Decomposed 2 6067 0.35 (x4) 2700 (x4) 793
D?z ;Z !z] Decomposed 3 12125 0.74 (x4) 2670 (x4) 1520
*[A?x ; Sequential 3258 1.26 271 138

Linear B?y ; Decomposed 1 3071 0.75, 1.35 559, 400 304
Subprograms C !(x + 1),D?z ; Decomposed 2 4897 0.94, 2.11 563, 408 442

E !(y + z)] Decomposed 3 7807 1.23, 2.84 559, 403 538
*[C?c,A?x ,B?y ; Sequential 2954 1.12 195 153

Conditional [c = 0 → X !x Decomposed 1 3849 2.04 437 399
Router []c = 1 → Y !y]] Decomposed 2 5483 3.41 444 629

Decomposed 3 8282 5.13 442 903
Sequential 7081 1.12 282 280

MIPS R3000 CHP exactly Decomposed 1 9090 4.32 331 398
Writeback Unit as in [5] Decomposed 2 12392 5.70 391 613

Decomposed 3 18093 7.49 392 932
Sequential 44731 2.77 141 875

Async. RISC-V Microarchitecture Decomposed 1 58897 4.52 248 1022
Fetch Unit detailed in [14] Decomposed 2 84826 7.01 251 1321

Decomposed 3 105899 8.85 254 1873

Fig. 4. Synthesis results for CHP programs using Maelstrom, without and with varying levels of the automated decomposition. All metrics are from SPICE
simulations in a 65nm technology node. Note that for the first test-case, the resulting decomposed processes are 4 identical and unsynchronized copies of the
same template, i.e. a buffer, and hence we report it once, with an (x4) marker. For the second test-case, the two resulting processes are entirely unsynchronized
relative to each other, and hence we report both individual throughput and latency values.

signals, a channel implements a network protocol to transmit
data from one process to another.

• Skip: skip does nothing; continues to the next command.
• Assignment: x := e sets the variable x to the value e ,

where e is an expression.
• Send: C !e sends the value of e over the channel C .
• Receive: C ?x receives a value over channel C and stores

it in the variable x .
• Sequential Composition: S ;T executes the programs S

followed by T .
• Parallel Composition: S||T executes the programs S

and T in any order.
• Deterministic Selection: [G1 → S1[]...[]Gn → Sn]

where Gi , called a guard, is a dataless expression and Si

is a program. The selection waits until one of the guards,
G

i
, evaluates to true, then executes the corresponding

program, S
i
. The guards must be stable and mutually ex-

clusive. The notation [G] is shorthand for [G → skip],
which corresponds to waiting for G to become true.

• Non-Deterministic Selection: [|G1 → S1[]...[]Gn →
Sn|] is the same as Deterministic Selection except that
the guards do not have to be stable or mutually exclusive.
If two or more evaluate to true simultaneously, then one
is picked arbitrarily (not necessarily random).

• Loop: *[G1 → S1[]...[]Gn → Sn] is similar to the se-
lection statements. However, once a branch is completed,
the guards are re-evaluated and another branch is chosen.
The process is repeated until no guard evaluates to true ,
in which case the loop terminates. *[S] is shorthand for
[true → S].

• Do-Loop: *[S1 ← G1] is similar to the loop, but can

have only one branch. The branch is executed before eval-
uating the guard, similar to a do-while loop in software
programming languages.

APPENDIX II

Loops that are nested within other loops can be systemati-
cally extracted. Consider a loop within another as follows:

*[..; *[G1 −→ S1[]G2 −→ S2..[]Gn −→ Sn]; ..]

This CHP is rewritten into two concurrent processes as:

*[..;Ls !{x1, x2, .., xn},Lf ?{y1, y2, .., ym}; ..]
∥ c := 0;
*[[c = 0 −→ Ls?{x ′

1, x
′
2, .., x

′
n}, c := 1

[]c = 1 −→ skip];
[G ′

1 −→ S ′
1[]G

′
2 −→ S ′

2..[]G
′
n −→ S ′

n

[]else −→ Lf !{y ′
1, y

′
2, .., y

′
m}, c := 0]]

where G ′
i and S ′

i are the same as Gi and Si respec-
tively, with the variables replaced by their appropriate primed
counterparts. The sets of variables {xi} and {yi} are those
are needed within the loop computation (live-in to the loop)
and produced by the loop computation (live-out of the loop)
respectively. Next, we consider the transformation of multiple-
branch loops into do-loops. Suppose there exists a loop:

*[G1 −→ S1[]G2 −→ S2..[]Gn −→ Sn]

This can be rewritten into a do-loop, by embedding a selection
within it:

c := 1; *[[G1 −→ S1[]G2 −→ S2..[]Gn −→ Sn
[]else −→ c := 0]← (c = 1)]

106

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 13,2025 at 00:09:16 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] R. Manohar, Chp2prs: Syntax-directed translation of CHP programs
into production rules, 2023.

[2] A. Bardsley and D. Edwards, “The balsa asynchronous circuit syn-
thesis system,” in Forum on Design Languages, 2000.

[3] R. Li, L. Berkley, Y. Yang, and R. Manohar, “Fluid: An Asynchronous
High-level Synthesis Tool for Complex Program Structures,” in 2021
27th IEEE International Symposium on Asynchronous Circuits and
Systems (ASYNC), Beijing, China: IEEE, 2021.

[4] R. Manohar and A. J. Martin, “Slack elasticity in concurrent comput-
ing,” in Mathematics of Program Construction, G. Goos, J. Hartmanis,
J. Van Leeuwen, and J. Jeuring, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 1998.

[5] R. Manohar, T.-K. Lee, and A. J. Martin, “Projection: A synthesis
technique for concurrent systems,” in Proceedings. Fifth International
Symposium on Advanced Research in Asynchronous Circuits and
Systems, Barcelona, Spain: IEEE Comput. Soc, 1999.

[6] J. Teifel and R. Manohar, “Static tokens: Using dataflow to auto-
mate concurrent pipeline synthesis,” in 10th International Symposium
on Asynchronous Circuits and Systems, 2004. Proceedings., Crete,
Greece: IEEE, 2004.

[7] C. G. Wong and A. J. Martin, “High-level synthesis of asynchronous
systems by data-driven decomposition,” in Proceedings of the 40th
annual Design Automation Conference, Anaheim CA USA: ACM,
2003.

[8] C. S. Ananian, “The static single information form,” Ph.D. disserta-
tion, Massachusetts Institute of Technology, 2001.

[9] J. B. Dennis, “First version of a data flow procedure language,”
in Programming Symposium, B. Robinet, Ed., Berlin, Heidelberg:
Springer Berlin Heidelberg, 1974.

[10] A. V. Aho, M. S. Lam, and J. D. Ullman, Compilers: Principles,
Techniques & Tools. London, England: Pearson Education, 2007.

[11] S. Ataei et al., “An Open-Source EDA Flow for Asynchronous Logic,”
IEEE Design & Test, 2021.

[12] K. Srinivasan and R. Manohar, “Maelstrom: A logic synthesis tech-
nique for asynchronous circuits,” in International Workshop on Logic
Synthesis (IWLS) (poster), 2024.

[13] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-
Strength Verification Tool,” in Computer Aided Verification, D.
Hutchison et al., Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2010.

[14] R. Dashkin, “Asynchronous risc-v cpu design with pre-silicon val-
idation on synchronous fpgas,” Ph.D. dissertation, Yale University,
2024.

[15] J. Hansen and M. Singh, “A fast branch-and-bound approach to high-
level synthesis of asynchronous systems,” in 2010 IEEE Symposium
on Asynchronous Circuits and Systems, 2010.

[16] J. Hansen and M. Singh, “A fast hierarchical approach to resource
sharing in pipelined asynchronous systems,” in 2012 IEEE 18th
International Symposium on Asynchronous Circuits and Systems,
2012.

[17] C. A. R. Hoare, “Communicating sequential processes,” Communica-
tions of the ACM, 1978.

[18] A. J. Martin, “Synthesis of asynchronous VLSI circuits,” California
Institute of Technology, Tech. Rep., 1991.

[19] N. Bingham and R. Manohar, “A Systematic Approach for Arbitration
Expressions,” IEEE Transactions on Circuits and Systems I: Regular
Papers, 2020.

[20] R. Manohar, “An analysis of reshuffled handshaking expansions,”
in Proceedings Seventh International Symposium on Asynchronous
Circuits and Systems. ASYNC 2001, Salt Lake City, UT, USA: IEEE
Comput. Soc, 2001.

107

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 13,2025 at 00:09:16 UTC from IEEE Xplore. Restrictions apply.

