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Abstract—Neuromorphic computing seeks to build hardware
systems that are similar to the brain in form and function. Such
systems are composed of artificial neurons and synapses, both
of which will have to possess extreme energy efficiency to allow
spiking neural networks to scale to the size of the brain. In this
work, we present such a low-power subthreshold implementation
of the Izhikevich neuron model, inspired by the circuit introduced
by Wijekoon and Dudek. The circuit, designed in the UMC 65nm
process, consumes 11.74fJ/spike at a 0.18V supply voltage, while
operating on a biological timescale and allowing analog tunability
of control voltages so as to exhibit different spiking behaviors.
The circuit comprises an integrated digital spike transceiver that
communicates with AER arbitration circuitry and generates reset
pulses.

Index Terms—Neuromorphic, SNNs, Izhikevich model, Sub-
threshold, CMOS, Low power

I. INTRODUCTION

Spiking neural networks (SNNs) have recently become a
popular candidate for the next generation of neural networks.
This is mainly due to their biological plausibility, which
could potentially provide insight into the actual functioning
of the brain. Though modest SNNs can be simulated on
digital computers, even the largest supercomputers of today
are insufficient to simulate the entire human cortex in real-
time. Exploitation of graphical processing units (GPUs) [4]
and field-programmable gate arrays (FPGAs) [7] has led to
some improvements but each of these systems are limited
by the von Neumann memory bottleneck and it is unclear
if they will ever reach an energy efficiency comparable to
that of the neurons and synapses in the biological nervous
system [5]. To address this problem, study into the field of
neuromorphic engineering was started [1]. The principal focus
was to build hardware that directly emulates the behavior of
biological neurons and synapses by exploiting the similarity
in behavior with transistors (particularly in subthreshold).

Various models of differing levels of complexity exist, from
the simplistic leaky integrate-and-fire (LIF) model that is
easy to implement in hardware, to the biophysically accurate
Hodgkin-Huxley (HH) model [6]. The Izhikevich model [2]
provides a good middle ground between these two because
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it can reproduce various neural activities while retaining
computational simplicity.

Among the many CMOS circuits inspired by this model, the
circuit proposed by Wijekoon and Dudek [3] has the simplest
topology. However, their circuit operates in accelerated-time
with a large supply voltage, which negatively impacts the en-
ergy efficiency. Although earlier works [18] have attempted to
create equivalent circuits on biological timescales, they do not
address the crucial issue of subsumption of the neuron circuit
into a neuromorphic processor and how the arbiter signals and
their corresponding delays would affect the function of the
circuit.

In this work, we propose a subthreshold CMOS implemen-
tation of the Izhikevich model, based on the circuit proposed in
[3], that operates on a biological time-scale, has an integrated
digital subcircuit to communicate spikes to an AER arbitra-
tion system and provides an order-of-magnitude improvement
in energy dissipation compared to the previously proposed
circuits that operate on biological timescales [8]. Similar to
the earlier implementation, the behavior of the circuit can be
varied using two control voltages. The proposed digital spiking
subcircuit also causes the circuit to be robust to arbiter signal
delays and pulse widths, thereby enabling its use with digital
circuitry that has variable routing delays.

In the next section, we describe the Izhikevich mathematical
model. Section III provides a description of the functioning
of the analog and digital subcircuits. Section IV lays out
the simulation results and a comparison with earlier circuits.
Section V concludes the paper.

II. IZHIKEVICH MODEL

There is a large spectrum of mathematical models that
attempt to describe the behavior of neurons. At one end of
this spectrum is the HH model, which models ion channel
conductances in a biophysically realistic way but requires
highly complex circuitry to implement accurately. On the
other end is the LIF model which is the simplest but cannot
account for many observed behaviors, most notably frequency
adaptation. The Izhikevich neuron provides a balance between
the complexity of the HH model and the simplicity of the LIF
model, serving as an ideal model for use with neuromorphic



Fig. 1. Circuit Schematic and Component Sizes

hardware. The mathematical description provided by Izhike-
vich is as follows:

v̇ = 0.04v2 + 5v + 140− u+ Isyn (1)
u̇ = a(bv − u)

v > 30mV : v ← c, u← u+ d

Where v is the potential difference between and interior and
exterior of the soma of the neuron, commonly known as the
membrane potential, and u is known as the ‘slow membrane
recovery variable’ that accounts for the ion channel activations.
The adjustable parameters a and b define the timescale for
the recovery of u and the sensitivity of u to changes in v
respectively. The parameters c and d are the reset voltage
for v and the incremental reset for u respectively. Isyn is
the sum of all input currents flowing into the soma of the
neuron. Adjusting the values of a, b, c, and d allows the
Izhikevich model to demonstrate different behaviors observed
in biological neurons such as regular spiking, fast spiking,
chattering, low-threshold spiking, intrinsic bursting etc [9].

III. SUBTHRESHOLD CIRCUIT DESIGN

The proposed circuit is shown in Fig. 1. The circuit is split
into 3 components as marked in the figure: the membrane
voltage circuit, the recovery variable circuit, and the digital
AER interface circuit that also generates the reset signals.

A. Analog Dynamics Circuit

The circuit operates in voltage-mode, with the state vari-
ables v and u being represented by the voltage across Cv and
Cu respectively. The terms on the RHS of the differential equa-
tions in (1) are implemented using MOSFET drain currents as
shown:

Cv
dV

dt
= IM3 − IM5 + Isyn (2)

Cu
dU

dt
= IM4 − IM6

Where Isyn is the input current to the circuit and IMn

is the drain current of the n-th transistor. The circuit here
uses a supply voltage of 180mV, which is well below the

voltage required to cause strong inversion in the transistors.
This ensures that all the transistors always operate in the
subthreshold region.

Since the subthreshold currents follow an exponential re-
lationship with the gate-source voltage, constraining their
ranges appropriately allows us to realize linear and quadratic
functions that are necessary for the Izhikevich model. A crucial
factor to note is that the coefficient of the second-degree term
in the v equation (0.04) is much smaller than the coefficient
of the linear term (5). This is advantageous as the Taylor
series coefficients also follow a similar trend, with successive
coefficients becoming smaller. This constraint process can be
thought of as an extension to linearization around the operating
point of a MOSFET.

B. Digital Spiking and AER Circuit

The spike generation and communication functions are
performed by the digital circuitry shown on the right in Fig.
1. When the membrane potential reaches the threshold of the
inverter (M9, M10), the output of that inverter goes low. The
ACK signal is normally low and hence the second inverter
(M11, M12) remains activated, and its output goes high. This
then turns on M14, and M15, which sends out an active-
low request (REQ) signal to indicate that a spike has been
generated to the following digital arbitration circuitry. The
resistor R1 and capacitor C1 are used to emulate the load that
M15 will have to drive. When the arbitration circuit sends
back an acknowledge (ACK) signal that the spike has been
processed, the membrane voltage is set to its reset voltage,
Vc, via M7. Furthermore, M8 is turned on by ACK going
high, which increases the voltage at U. The ACK signal
also temporarily disables the second inverter through M13, to
prevent any extraneous spikes from being sent out before the
previous spike has been processed completely. M16 prevents
the shorting of the supply during the waiting period between
the time when REQ is sent out and the time when ACK is
received. When the ACK pulse ends, the circuit has been
reset to its original state and the temporal evolutions of state
variables resume.



Fig. 2. Regular Spiking and Chattering Behaviors

Fig. 3. Low Threshold Spiking, with the final periodic behavior zoomed in

IV. RESULTS

The proposed Izhikevich neuron circuit was simulated in
Cadence using the UMC 65nm technology node. Simulation
results are shown in Figs. 2 and 3. Regular spiking (RS) was
obtained by setting Vc to 140mV and Vd to 140mV. Chattering
(CH) was obtained by setting Vc to 20mV and Vd to 150mV.
Low threshold spiking (LTS) was obtained by setting Vc to
20mV and Vd to 20mV. An input current of 2pA was used
for all three cases. For all these simulations, a 1µs delay was
used between the time the REQ signal is sent out and the ACK
signal is received to emulate the delay in the digital circuitry.

The regions of operation of the circuit are shown in Fig.
4, with X representing the regions where there is no spiking
activity. The parameters Vc and Vd were varied in steps of
10mV each to generate data points.

Fig. 5 shows the variation in spiking frequency under two
different control voltage settings, both in the RS mode, with
the width of the ACK pulse that is used to reset the state
variables in the circuit. The spiking frequency is practically
constant over a range from 1ns to 10µs, beyond which it
drops gradually as the width becomes a significant proportion
of the spiking time period itself.

Table I shows the comparison of this work with previously
published circuits. Compared to the original circuit, which
operates in accelerated time (microsecond scale), the circuit

Fig. 4. Regions of Operation of the circuit. Vc and Vd are varied in steps of
10mV.

presented here shows activity on the millisecond scale, which
is similar to biological neurons. Furthermore, it is possible to
slow the firing rates even more by changing some transistor
sizes. The circuit also achieves an energy consumption of
11.74fJ/spike in the regular spiking mode, which is the lowest
reported for an Izhikevich model so far. Energy consumption
for the different modes are shown in Table II.

Fig. 6 shows the variation in spiking frequency of the circuit
in different modes, with varying input current. The frequencies
are averages over a 5ms window to ensure a meaningful value
for the circuit in CH mode, where the instantaneous frequency



TABLE I
PERFORMANCE COMPARISON

Parameters This work Dudek ‘08 Ronchini ‘20 Tamura ‘19 Rangan ‘10 Zhang ‘17 Braindrop ‘18 Loihi ‘18 TrueNorth ‘14
[3] [18] [12] [13] [14] [15] [16] [17]

Model Izhikevich Izhikevich Izhikevich Izhikevich Izhikevich Izhikevich Quad. IF LIF Aug. LIF
Implementation Mixed Analog Analog Analog Analog Mixed Mixed Digital Digital

Technology 65nm 350nm 180nm 65nm 90nm 65nm 28nm 14nm 28nm
Timescale Biological Biological Biological Accelerated Biological Accelerated Biological NA Biological

Energy (J/spike) 11.74f 8.5p 58.5f 2p* 1p 40f* 380f 24p 26p
∗Calculated from reported Regular Spiking frequency and power consumption values.

Fig. 5. Variation in Spiking Frequency with ACK signal width. Input current
was fixed at 2pA.

is not constant across time.
Mismatch simulations were performed for the entire circuit,

with a maximum of 10% variation in all lengths and widths,
with all operation region boundaries shifting by less than
10mV in either direction. Capacitors were not varied in this
simulation. Noise simulations, with contributions from all
FETs resulted in a <0.1% timing jitter.

TABLE II
ENERGY CONSUMPTION

Operation Mode Energy/spike
RS 11.74 fJ
CH 15.12 fJ
LTS 3.10 fJ

V. CONCLUSION

A subthreshold CMOS implementation of the Izhikevich
neuron model was presented. The circuit, designed in the
UMC 65nm process displays many of the spiking modes
described by the model and achieves an energy consumption
of 11.74fJ/spike, which is a significant improvement over
the previous state of the art. The novel spike-generation
block allows the circuit to operate reliably over 4 orders of
magnitude of communication latencies. In contrast to previous
implementations [18], the circuit operates reliably over a large
area in the parameter space, allowing continuous tuning of
parameters, resulting in a wider range of achievable spiking
frequencies. The circuit, in its current form, does not exhibit
the intrinsically bursting (IB) and thalamo-cortical (TC1)

Fig. 6. Variation in Spiking Frequency with input current

modes, but these spike signatures are very similar to low-
threshold spiking and regular spiking respectively and hence
will have nearly the same impact on a network. It is also
pertinent to mention that none of the analog implementations
demonstrate all the Izhikevich modes. Due to the extremely
low energy consumption and supply voltage requirements,
the circuit is suitable for use in large-scale spiking neural
networks, neuromorphic processors and in embedded applica-
tions, like neuromorphic implants and ECG anomaly detectors,
where power is a serious constraint.
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