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Abstract—The event-driven nature of spiking neural networks
(SNNs) makes them biologically plausible and more energy-
efficient than artificial neural networks. In this work, we demon-
strate SNN-based motion detection of an object in a two-
dimensional visual field. The network architecture presented
here is biologically plausible and uses CMOS-based analog leaky
integrate-and-fire neurons and ultra-low power RRAM synapses.
We have investigated the role of visual field optimization on
network performance in terms of accuracy and power cost.
Also, noise immunity of the proposed architecture is studied by
injecting random fluctuations across the spatial locations in the
visual field. Detailed transistor-level SPICE simulations show that
the proposed structure can accurately and reliably detect complex
motions of an object in a two-dimensional visual field.

Index Terms—RRAM, Synapse, LIF Neuron, Compact model,
SNN, Motion Detection

I. INTRODUCTION

In the field of computer vision, motion detection has been
traditionally performed using machine learning algorithms on
hardware that are based on the von Neumann architecture.
As modern-day microprocessors face the infamous memory
bottleneck issue, these approaches often turn out to be power-
hungry [1]. On the other hand, spiking neural networks
(SNNs) emulate the dynamics of biological neural networks
in electronic circuits and deliver low-power, inherently par-
allel computation. Event-driven computation thus becomes an
alternative in realizing energy-efficient hardware for numerous
cognitive tasks [2]. The emergence of novel non-volatile mem-
ory technologies such as resistive random-access memories
(RRAM), phase-change memories, and spin-transfer torque
RAMs has further accelerated the development of SNNs [3].
Several techniques have been proposed in the past for motion
detection using SNNs [4–8]. In [4], a novel temporal coding
scheme has been used to encode the real-time motion into
a series of spikes, and a gradient-descent learning algorithm
is utilized for training the two-layered SNN. Various studies,
such as probabilistic feed-forward synapses [6], rate-based
Hebbian learning [7], and spike-timing-dependent plasticity,
[8] have been proposed to realize directional selectivity and
solve the motion detection problem. These approaches have
shown promising results. However, they often come up with
hardware implementation challenges. On the other hand, con-
sidering biological neural systems’ high efficacy and accuracy,
authors in [9] have shown insect-inspired elementary motion
detection. Onboard computational bandwidth is limited in
applications such as robotics and compact visual surveillance.
Therefore, it is envisaged that the ability to mimic an insect’s
navigation system would significantly benefit these applica-
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Fig. 1: Unit cell architectures: (a) spatial arrangement of the input layer neuron
(b) modified proposed network showing the neurons in the input, hidden,
and output layers; LIF neurons represented by circles are interconnected by
RRAM-based synapses shown by lines. (c) The membrane potential evolution
of the output neurons when the stimulus is moving diagonally from Left-Up
to Right-Down. Vertical dotted lines indicate input spikes (green for excitatory
and red for inhibitory). Triangle markers indicate output spikes.

tions. In this work, we modify the network presented in [9] and
extend its capability to detect complex motions. Furthermore,
we investigate the role of visual field optimization on network
performance in terms of accuracy and power cost. Finally,
we evaluate the noise immunity of the proposed network by
injecting noise into the visual field at a random spatial location.
Our proposed SNN uses CMOS-based analog leaky integrate-
and-fire (LIF) neurons and ultra-low-power, forming-free
RRAMs as synapses. The SPICE implementation of our net-
work uses an experimentally validated physics-based Verilog-
A model for the synapses and transistor-level implementations
for the neurons.

II. NETWORK ARCHITECTURE AND ITS OPERATION

A delay and correlate network was presented in [9]. The
basic idea is to introduce a temporal delay between two
spatially adjacent inputs followed by a downstream mechanism
for detecting the spatio-temporal correlations. The spatial
arrangement of the input layer of a unit cell is shown in
Fig. 1(a). The neuron at the center (white circle) is denoted
as a neutral neuron as it is not pointing to any of the cardinal
directions. Neurons in the input layer are connected to the
output layer neurons through a hidden layer, as shown in
Fig. 1(b). We introduce lateral inhibition (indicated by the
red lines) between Up-Down and Left-Right output neurons to
emphasize that an object cannot simultaneously move in the
Up-Down or Left-Right direction. This modification reduces
the spiking activity for the output neurons that are not meant
to fire for the given excitation, thus improving the network
accuracy and energy cost. Additionally, we use N number of
(instead of a single) output neurons per direction to make the
network capable of detecting objects moving with a wide range
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Fig. 2: The tessellation pattern consists of: (a) 12×12 visual field with 16
unit cells (VF1); (b) 15 unit cells, arranged in a staggered manner for a
10×11 visual field (VF2). Red boxes denote the locus of the center of the
3×3 square stimulus, while the stimulus itself is shown in blue. (c) Structure
of the implemented SNN. Here neurons (shown by circles) in one layer are
connected to the neurons in other layers through synapses (not shown to avoid
cluttering).

of frequencies. The value of N and the time constants of each
output neuron can be adjusted to meet the application-specific
requirements.
Input layer neurons in Fig. 1(b) denote the spatial activity of
the object in the visual field and encode it by introducing the
temporal delay between the activities in the spatially adjacent
region. This information from the input layer is passed on
to the hidden layer through synapses. Appropriately adjusted
time constants of the hidden layer neurons coupled with the
information received from the input layer generate a unique
spatio-temporal pattern encoding the spatial activity at the
input layer. In this case, the neutral neuron’s time constant
is shorter than the other four neurons. Finally, the spatio-
temporal pattern generated at the hidden layer is transmitted to
the output layer. The incoming spikes to the output layer may
have an excitatory (green lines) or inhibitory (red lines) effect
on the output layer. The output layer neurons are designed
with threshold voltages and time constants such that they
will fire if they receive two consecutive excitatory spikes
within a short time interval. However, if an inhibitory spike is
received shortly before the first spike, the membrane voltage
is reduced sufficiently, and the excitatory pair of spikes do
not cause an output spike. Fig. 1(c) illustrates the working
of the unit cell when the object moves diagonally from Left-
Up to Right-Down direction across an input cell. The input
neurons get excited in the order: Left and Up → Center →
Right and Down. The temporal delays in the activities at the
spatially adjacent location are encoded at the input layer and
are coupled with the appropriately adjusted time constants of
the hidden layer neurons. This results in a spike pattern at
the output neurons as follows: Down and Right receive two
excitatory spikes followed by one inhibitory spike; Up and
Left receive one inhibitory spike followed by two excitatory
spikes. Hence, the Right and Down neurons spike for this input
sequence while the other two do not.
The input cell shown in Fig. 1(a) is used to tessellate both the

visual fields, as shown in Fig. 2(a)&(b). In order to investigate
the impact of tessellation pattern across the visual field, we
consider two visual fields, VF1 and VF2. Each input cell has
its own patch of hidden layer neurons connected to a common
output layer, as shown in Fig. 2(c). The network utilizing VF1

(VF2) has a total of 80 (75) input neurons, 144 (135) hidden

neurons, and 4N output neurons, where N varies from 1 to
5 for performance comparison. A total of 336 (315) synapses
are required to realize the connections between the neurons.

III. SPICE IMPLEMENTATION

A. Synapse Model

We demonstrated ”forming-free” operation, with the ultra-
low operating current, in graphene-insulator-graphene (GIG)
RRAM devices [10]. The forming step, and high operating
currents often demand bulky and energy-hungry peripheral
circuits, therefore, our GIG RRAM devices are promising for
low power application. The electrical equivalent schematic of
the RRAM used for the simulations is shown in Fig. 3(a)(top).
The model framework assumes the existence of a pre-formed
filament in the top TiO2 and the bottom TiOx layers because
of the forming-free nature of the device. The total series
resistance offered by the graphene electrode and TiO2 layer
is modeled as a lumped resistor, Rgr + RTiO2

. The resistive
switching behavior in this device is attributed to the formation
and rupture of a conductive filament in the Al2O3 layer (as
shown in Fig. 3(b)), and it is modeled as a series connection of
variable resistor (RAl2O3

) and controlled current source (Igap).
Fig. 3(c) shows the simulated current-voltage characteristics of
GIG devices. One can look into our earlier work for a detailed
discussion on model development and related parameters [11].

B. Analog LIF neuron

The schematic of the LIF neuron used in this work is
shown in Fig. 3(a)(bottom). The currents Iin coming from
the synapses (connected at the input terminal of the LIF
neuron) charge up the capacitor. An internal state variable, the
membrane potential Vm(t), characterizes each spiking neuron.
When this membrane potential exceeds a fixed threshold (Vth),
a spike is sent out, and the capacitor is discharged to a
reset potential (Vreset) using the voltage-controlled NMOS

Fig. 3: (a) The electrical equivalent of the RRAM used in this study [top].
Schematic of a Leaky Integrate-and-Fire (LIF) neuron. (b) 2-D schematic of
the GIG devices (c) Current-voltage characteristics obtained using our model
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switch. A comparator and a delay block are used to generate
the constant-width output spikes. The neuron block is imple-
mented using TSMC’s 180 nm CMOS standard cell library.

C. Stimulus Generation

The input spikes denoting the object’s motion are generated
using a peripheral circuit that mimics a dynamic vision sensor
(DVS). Each pixel in a DVS is sensitive to relative temporal
contrast in the luminous intensity, and upon detection of
a sufficiently significant change, it sends out a spike [12].
To emulate this behavior, we treat each event as a vector
e = (x, y, t), where x and y define the pixel location in
the visual field, and t denotes the time of the event. The
moving object’s trajectory is modeled using the appropriate
mathematical function, and it is used to excite the input layer.

IV. RESULTS

A SPICE simulation of the network shown in Fig. 2(c)
is done using Cadence Virtuoso. The synaptic conductance
values, LIF neuron’s time constants, and threshold voltages are
analytically obtained. However, for large networks, one could
use bio-inspired algorithms such as genetic algorithms for
obtaining relevant network parameters. The object is assumed
to be a square block of 3×3 pixels shown in blue in Fig. 2(a),
(b). The red color denotes the circular locus of the object’s
center. Whenever the object is at a specific location, all the
neurons that the object covers produce a spike that propagates
through the network’s hidden layers, as shown in Fig. 2(c).
We expect a significant increase in the firing activity of the
output neuron when the object moves across the visual field
in its corresponding direction. The output firing rates for
circular and eight-shaped trajectories are shown in Fig. 4(a),
(b). For a circular input path, the four output neurons produce
sinusoidal firing with a rate having relative phase lags of 90◦

between them, as shown in Fig. 4(a). This can be understood
by considering the UP-DOWN and LEFT-RIGHT neuron
pairs as two orthogonal basis elements encoding the direction
of motion. The stimulus travels rightwards from 0 to T/2,
leftwards from T/2 to T, upwards from 3T/4 to T/4, and
downwards from T/4 to 3T/4, where T is the time period.
The firing rates of the corresponding output neuron reach

their maxima at the midpoint of the time intervals mentioned
above. Similarly, for an eight-shaped input path, the firing
rate of the UP-DOWN neurons is half of that of the LEFT-
RIGHT neurons. Here, the stimulus makes two oscillations
along the horizontal direction for every oscillation along the
vertical direction, as shown in Fig. 4(b). The instantaneous
firing rate (fo) is calculated by filtering the spike trains using
a low-pass filter as fo(t) = h(t) ∗ S(t), where * denotes
the convolution operation. Here S(t) refers to the spike train
(a sequence of impulses at the locations of the spikes) and
h(t) = λ(e−t/τ1 − e−t/τ2)u(t) denotes the impulse response
of the aforementioned filter with τ1 and τ2 as constants that are
set to the mean and twice the mean of the output neuron’s time
constants. λ is a normalization constant and u(t) is the unit
step function. The ideal spiking rates (fo

ideal) corresponding to
the four output neurons are obtained from the parameterization
(x(t), y(t)) of the path for the considered trajectories (circular
and eight shaped) as

fo
i,ideal(t) =

fmax

2

∣∣∣∣ ṗ(t)ṗmax
+ 1

∣∣∣∣ (1)

where i takes on four values depending on the output channel
(UP, DOWN, LEFT, RIGHT). For UP and DOWN (LEFT
and RIGHT), the directional velocity ṗ(t) and its maximum
value ṗmax are replaced by ẏ(t) and ẏmax (ẋ(t) and ẋmax),
respectively. Here fmax is the maximum firing rate of the
output neurons. The ideal firing rates reach their maximum
when the object moves at the maximum velocity along the
preferred direction and go to zero when the object moves
against the preferred direction. In case of no movement either
along or against, they settle to half of the maximum rate. The
firing rate obtained from the SPICE simulations (solid lines)
is in good agreement with the ideal firing rate (dotted lines),
as observed in Fig. 4(a) & (b).
Next, we use N (instead of one) output neuron(s) per direction
to make the network sensitive to a wide range of moving
object frequencies. The network with five output neurons
per direction, with logarithmically distributed time constants
ranging from 5 ms to 500 ms, is found to perform better,
as shown in Fig. 4(c). The accuracy score of the network is

Fig. 4: Ideal (dotted lines) and SPICE simulated (solid lines) firing rates of the output neuron for an object moving in (a) a circular path and (b) an eight-shaped
path. These results correspond to VF1. (c) Normalized accuracy score versus input motion frequency: performance comparison of single output neuron with
a single time constant (500 ms) and a larger number of output neurons with a range of time constants (5 ms-500 ms).
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Fig. 5: Normalized accuracy score versus the number of noisy neurons for (a)
a circular path (b) an eight-shaped path. The accuracy score is shown for both
VF1 and VF2 with (solid line) and without (dashed line) lateral inhibition.
Power consumption comparison for (c) eight and (d) circular shaped path for
both VF1 and VF2 considering lateral inhibition.

defined as

Sacc =
1

4

∑
i

(
1−

|fo
i,ideal(t)− fo

i,measured(t)|2

|fo
i,ideal(t)|2

)
. (2)

The design of the visual field plays a pivotal role in the perfor-
mance of the network. Therefore, we consider two visual fields
for the analysis: VF1 and VF2. To evaluate the noise immunity
of the network, we introduce noisy neurons (randomly located)
per time-step across the visual field during the simulation.
Fig. 5(a), (b) show the accuracy score comparison against the
number of noisy neurons for both the visual fields. As the
number of noisy neurons per time-step increases, the accuracy
score is expected to decrease; however, this reduction is less in
the case of VF2 than VF1. VF2 shows better noise immunity
for both circular and eight-shaped paths than VF1. We attribute
this improvement in noise immunity of VF2 to the reduced
sparsity in the visual field and better SNR in comparison with
VF1. Also, it can be noted that the presence of lateral inhibition
has improved the accuracy scores significantly in both the
visual fields. Finally, we compare the power consumption
associated with both the VF1 and VF2, shown in Fig. 5(c), (d).
Reduced sparsity in VF2 has led to improvement in SNR and
consequently in the accuracy score; however, this improvement
is accompanied by relatively higher power consumption in
VF2 than VF1.

V. CONCLUSION

We have presented a SPICE simulation framework for SNN-
based motion detection. We design our network using an
experimentally validated physics-based synapse model and
transistor-level implementation of LIF neurons. We demon-
strate improved network performance by including lateral
inhibition and a pool of N output neurons per direction. The
proposed network can accurately encode the object’s direction
of movement over a significant frequency range of the moving
objects. Also, we discuss the trade-off involved in the design of
visual fields. A sparser visual field is found to be advantageous
from a power consumption viewpoint; however, they might
underperform in terms of accuracy and noise immunity.
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