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Basic Mechanisms - Dynamics

» Behavior of spiking neurons are modeled using differential equations
* Complexity of the model refers to complexity of these equations

* The principal variable is the membrane potential

* Complex models have other variables too

* Eg. Izhikevich model shown below:

Differential equations of the Izhikevich model

V' =0.04v?+ 5v+ 140 -u + | If v=30 mV
u =a(bv-u) Thenv=c,u=u+d



Basic Mechanisms — Excitation and Inhibition

 Excitation — depolarization of the membrane potential
* Inhibition — hyperpolarization of the membrane potential
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Basic Mechanisms — Spiking

* A spike is a sudden increase and subsequent resetting of the
membrane potential

* Triggered when membrane potential crosses some threshold

 Communicates information between neurons through
neurotransmitters sent across the synapses

* Timing code
 Value of the spike contains no information
* Time of spike is relevant
* In brains, spikes on average,
carry approx. 3 bits/spike of information ‘



Basic Mechanisms — Encoding

* Neurons communicate with each other using spikes

e But to process external signals, need a method for converting inputs
to spikes

* Encoding is done by complex sensory neural networks in biological

system
* Eg. Cones, rods and many others cells cooperate to convert light into spikes in

the retina



Basic Mechanisms — Encoding

* Mathematically, we represent this by an inner product between the
input vector and the encoder vector, followed by feeding into a

neuron:
* Ji(X) = algpy, X) + ]}
* alx) = G[J;(%)]
 J;(x) is the current fed into the neuron
 a(x) is activity of the neuron i.e. the firing rate of the neuron

* ais a gain, J? is the bias current

 G[.] is the non-linearity of the neuron, which varies depending on the
model being used



Basic Mechanisms — Decoding
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Leaky Integrate-and-Fire Model

* Simplest Model
* Inexpensive to implement
* Can be used for excitatory/inhibitory neurons

* Does not contain adaptation

* Cannot describe many measured u(t)u J_|_
spiking behaviors

* Differential Equation:

AV (t) Via (2) N Ve vity] W
Cm dt - I(t) o Spi
' T Viest Dplke V.

Rlll
e If V,,, > Vi, then reset I, to I/




Hodgkin-Huxley Model

* Most biophysically realistic
* Models ion channel conductances

. 174 )
* Has 4 state variables I = Cdd—t + gk (Vi — Vi) + Gnam*h( Vi, — Viva) + Gt(Vin — V1),
* V—membran tential
€ b ane pO € a ] . % = o (Vin)(1 = n) = Ba(Vin)n
* n— potassium channel activation ‘
. . . dm i . i
* m —sodium channel activation —i = 0 (Vin) (1 = m) = Bn(Vin)m
* h—sodium channel inactivation dh

i (Vi) (1 = k) — Bp(Vin )R
* Difficult to implement



HH circuit model, response to incoming spike
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lzhikevich Model

dv ;
" = 0.04v + 5v + 140 — u + I(2)

* Middle ground between LIF and HH dt

* 2 state variables du _ b — )
. dt
* V —membrane potential
U - membrane recovery if v>30, v=ec¢, u=u+d

* Can display 20 different types of spiking behaviors
* Behavior controlled by varying a,b,c,d

* Easy to implement due to soft non-linearity in v equation
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Simulations of the Izhikevich Model
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Synapses

e Are used to communicate spikes between neurons

* Apply an LPF on spikes from pre-synaptic neuron to generate input current
for post-synaptic neuron

* Also perform weighting of inputs
* This weight is changed during training of the network

» Can undergo long-term potentiation/depression
* Learning/memory

* Can be excitatory or inhibitory depending on type of neurotransmitter
released

 RRAM devices are typically used to model synapses due to their variable
resistance (weight)
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Synapse models

e Simplest synapse models are exponential
decays

geys. [B) = Z - o (-t /r (t - t(f))
f

— | syn [pA]

* More complex models have difference-
of-exponentials
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Learning

* Process of changing weights in the synapses of a network
* Typically a local process in SNNs, unlike in ANNs

* In biological neurons, weight is controlled by the amount of
neurotransmitters released

* In SNNs, scaling gain of post-synaptic LPF is used to achieve weight
change

» Adaptation in neurons can be thought of as learning too



Hebbian Learning

e Rule:

* Let us assume that the persistence or repetition of a reverberatory activity (or "trace") tends
to induce lasting cellular changes that add to its stability. ... When an axon of cell A is near
enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such that A’s efficiency, as one of
the cells firing B, is increased.

* In short: neurons that fire together wire together; neurons that fire
out of sync lose their link

* Shortcoming

* Pre-synaptic neuron has to fire before post-synaptic neuron for causal
influence to exist

* This was fixed in STDP



Spike-Timing-Dependent Plasticity (STDP)

* Weight change is inversely proportional to
time difference between spikes

* If pre-synaptic spike occurs before post- |
synaptic spike, weight change is positive 5 0o
(potentiation) |

* |If post-synaptic spike occurs before pre- — | o-tims]
synaptic spike, weight change is negative 02|
(depression) |

* Local learning rule



Neural Engineering Framework

* General framework for building spiking networks
* Can be used for non-spiking networks also

* Three Principles:
* Non-linear encoding + weighted linear decoding
* Transformations: functions of variables represented by the population

* Dynamics: representations as state variables

* Can deal with noisy neurons



BRIAN2 Simulator - Installation

e Ensure you have python 3.5 (or higher) and pip installed

e Commands
* pip install brian2



Nengo Simulator - Installation

e Ensure you have python 3.5 (or higher) and pip installed
* Works well with Windows/Ubuntu

e Commands:
* pip install nengo
* pip install nengo_gui

* Once installation is done, type “nengo” into your terminal

* If everything went well, a new browser tab with an editor and GUI
should open automatically



